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Convection of a passive scalar by a quasi-uniform 
random straining field 
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The stretching of line elements, surface elements and wave vectors by a random, 
isotropic, solenoidal velocity field in D dimensions is studied. The rates of growth 
of line elements and (D- 1)-dimensional surface elements are found to be equal 
if the statistics are invariant to velocity reversal. The analysis is applied to 
convection of a sparse distribution of sheets of passive scalar in a random straining 
field whose correlation scale is large compared with the sheet size. This is 
Batchelor’s (1959) k-1 spectral regime. Some exact analytical solutions are found 
when the velocity field varies rapidly in time. These include the dissipation spec- 
trum and a joint probability distribution that describes the simultaneous effect of 
Stretching and molecular diffusivity K on the amplitude profile of a sheet. The 
latter leads to probability distributions of the scalar field and its space derivatives. 
For a growing Ic-l range a t  zero K ,  these derivatives have essentially lognormal 
statistics. In the steady-state Ic-l regime a t  K > 0,  intermittencies measured by 
moment ratios are much smaller than for lognormal statistics, and they increase 
less rapidly with the order of the derivative than in the K = 0 case. The K > 0 
distributions have singularities a t  zero amplitude, due to a background of highly 
diffused sheets. The results do not depend strongly on D. But as D -+ 00, tem- 
poral fluctuations in the stretching rates become negligible and Batchelor’s 
(1 959) constant-strain dissipation spectrum is recovered. 

1. Introduction 
In recent years there has been a substantial theoretical and experimental 

effort exerted in the study of small-scale statistics and intermittency effects in 
turbulent flows. In  a previous paper (Kraichnan 1974), we have attempted to 
analyse some of the theoretical ideas about the statistics of the inertial range 
and to point out how wide a range of possibilities remains open until some de- 
tailed analysis based on real use of the Navier-Stokes equation can be brought 
to bear. The convection of passive-scalar blobs by a velocity field whose shear 
is almost constant over a blob is an attractive problem in this context. In  intro- 
ducing the problem, Batchelor (1959) obtained exact results (a rare thing in 
turbulence theory) for the spectrum power law at wavenumbers where mole- 
cular diffusivity is unimportant and for the dissipation spectrum, the latter 
result being restricted to the case of strains which are very persistent in time. 
Kraichnan (1968) found the dissipation spectrum for the opposite case of a 
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velocity field with a very short correlation time. In the present paper, the exact 
results for a rapidly varying velocity field are extended to a variety of higher 
statistics, including intermittency of spatial derivatives of the scalar field, for 
the case where the initial, or input, scalar field consists of a collection of sparsely 
distributed little sheets, of arbitrary amplitude profile. The analysis is carried 
out for an incompressible velocity field in a space of arbitrary dimension D. 

Because exact results can be obtained, this problem is a good testing ground 
for general ideas, about the build-up of intermittency through repeated random 
straining or cascade, which have been applied to small-scale turbulence statistics. 
In  particular, we are able to examine precisely the effect of molecular dissipa- 
tion on essentially lognormal statistics which are built up in the passage of the 
scalar blobs through the k-1 range. Because the scalar dynamics are linear, it  is 
possible to sort out effects of velocity-field statistics from those of the input 
scalar statistics. 

Treatments analogous to the present one, although with less possibility of 
exact results, can be carried out for blobs of passive scalar cascading through a 
- 3 spectral regime, for inertial-range cascade in three-dimensional Navier- 
Stokes turbulence with an initial condition of sparsely distributed thin vortex 
rings, and for enstrophy cascade in two-dimensional turbulence. The analogy 
with the last-named problem is particularly close. Because of these connexions, 
the present analysis is carried out in considerable detail, and with fairly sub- 
stantial formal trappings. 

The work is carried out in a space of general dimension D in order to see whether 
there are qualitative differences in behaviour for different D and, in particular, 
to examine the asymptotic behaviour as D + 00. The desirability of doing this 
was pointed out to me by Dr M. Nelkin, on the basis of possible analogies with the 
dependence of properties on dimensionality in critical-point phenomena. Our 
results are perhaps suggestive. For D --f 00, temporal fluctuations in the stretch- 
ing of scalar blobs become negligible, and Batchelor’s original dissipation spec- 
trum based on constant strain is recovered. 

Section 7 of the paper contains a detailed summary of the analysis. It should 
probably be looked over before starting the body of the paper. 

2. Stretching of lines, wave vectors and surfaces 

according to 
An infinitesimal line element ri moving with the fluid velocity ui(x, t )  stretches 

dri/dt = aij(x, t )  r j ,  aij(x, t )  = au,(x, t)/axj. (2.1) 

Hence r(t) = W(t, x; t’, x’) . r(t‘), (2.2) 

with (2.3) 

(Cocke 1969). In  (2.3), exp, means that all the matrix factors a in the expansion 
of the exponential are arranged from right to left in order of increasing time 
argument; y = y(s) is the position of the line element in the fluid at time s, with 
y( t ’ )  = x‘ and y(t) = x. 
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Consider a field $(x, t )  which moves with the fluid according to 

(2.4) 

At time t ,  suppose it has locally the form #(x,t) = exp(ik.x),  where k-l is 
infinitesimal. Then in an infinitesimal neighbourhood of x 

$(x + r, t + dt)  = exp {ik. [x + r - u(x, t )  dt - a(x, t )  . rdt]} 

= exp {ik. [x - u(x, t )  dt]} exp {irk - k. a(x,  t )  at]. r}. 

Hence the local wave vector k(t) obeys 

and 

with 

dki/dt = - k ia j i ( x ,  t ) ,  

k(t) = kft’) . W-l(t, X ;  t’, x‘), 

(2.5) 

(2.6) 

(2.7) 

Here exp, denotes time-ordering from left to right and W. W-l = W-l . W = I, 
the unit matrix. It follows from (3.2) and (2.6) that  

(2.8) 

if r and k are any line element and local wavenumber which are carried along in 
the same fluid element. 

The normal vector terminating on neighbouring surfaces of zero phase of 4 in 
the preceding analysis is ;rrk/k2. Since k is arbitrary, it follows that the normal 
vector b connecting any two infinitesimally separated parallel surface elements 
moving with the fluid has a reciprocal vector k = b/b2 which obeys (2.5) and 
(2.6). Substitution into (2.5) gives for b itself the equation 

k(t) . r(t) = k(t’) . r(t’), 

db,/dt = - biaji + 2b, b, bi b-2ajn. (2.9) 

Now consider an ensemble of r(t’) and k(t‘) which are statistically independent 
of the velocity field and statistically isotropic a t  all x‘: 

(r(t‘) r(tf))/lr(t’)12 = (k(t‘) k(t’))/(lk(t’)12) = D-ll, (2.10) 

where D is the number of space dimensions. It follows directly from (2.2), (2.6), 
(2.10) and the independence assumption that 

(rZ(ft)>/(r2(t’)) = D-l(tr [ ~ ( t ,  x; t’, x’) .W(t, X; t ‘ , x’)]), (2.1 1 a )  

(k2 ( t ) ) / (k2 ( t ’ ) )  = D-l (tr [+-l(t, x; t ’ ,  x’). W-l(t, x;  t’, x’)]). (2.11 b)  

Here @ ( t )  = lr(t)12, t r  denotes trace, qj = Ti and (p-l)ii = (W-l)ji. W-l is also 
the inverse of !@, satisfying W. G-l = W-l. W = I .  

Several things should be noted about the derivation of (2.11). We have made 
no restriction on D (D 1) nor have we assumed incompressible flow. If the flow 
is compressible, (2.4) is not the usual equation for a passive scalar; we use it 
purely as a device. No assumption has been made about the velocity-field 
statistics, nor about the probability distribution of the initial positions xf of 
the line elements and local wave vectors. 

N 
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7 40 R. H .  Kraichnan 

Now suppose that (i) the flow is incompressible (which requires D > 1) and 
(ii) all averages over the velocity field are invariant to the velocity reversal 
u(x,t’+s) -+-u(x,t-s) (0 6 s < t - t ’ ) .  It followsfrom (2.11) that 

(2.12) 

where [ 1,. denotes a space average over an initial uniform distribution of the 
starting positions x‘ over the whole volume of the fluid. The proof is short. A line 
element (or local wave vector) which originally follows a trajectory from (x‘, t ’ )  
to (x, t )  would, under the reversal, retrace the trajectory to (x’, t ) ,  if initially 
placed at (x,t‘). In  doing so, it  would suffer just the reverse of the original 
stretching and rotation. This implies that, under the velocity reversal 

W(t, x; t’, x’) -+ w-yt, x‘; t‘, x), (2.13) 

a result which is also easy to see from (2.3) and (2.7). The use of (2.13) in (2.11) 
gives 

(2.14) 

under the assumption of reversal invariance. Since the flow is incompressible, the 
probability measure of the element positions is conserved, so that a uniform 
distribution of positions x‘ implies a uniform distribution of positions x, and 
vice versa. Consequently, the value of the right-hand side of (2.14) is unchanged if 
[ 3,. is replaced by [ I,. The result is identical with the average [ 1,. of (2.11a), 
yielding (2.12). (Note that in the space averaging x and x’ are integration vari- 
ables, only one of which is independent.) Equation (2.12) also follows if the 
velocity statistics lack the time-reversal invariance (ii) but are invariant to 
reflexion about a centre of spatial symmetry, a particular case being reflexion- 
invariant homogeneous turbulence. 

Now let k be the reciprocal of the thickness vector of an infinitesimal thin 
slab of fluid whose (D - 1)-dimensional surface area is s(t). Incompressibility 
implies that Ic(t)/S(t) is independent oft. Thus (2.12) yields 

N 

[ (W)/(k2(t’)) lx ,  = [(tr W ( t ,  x’; t ‘ , x) W(t, x’; t’, x)l)lx*, 

(2.15) 

which says that the mean-square stretching of a randomly orientedandplacedsur- 
face element is equal to the mean-square stretching of a random line element. For 
D 2 3, equation (2.15) is perhaps surprising. At first sight, it might be expected 
that each edge vector of a surface element should suffer effectively independent 
stretching, so that the net rate of stretching of the surface area should have a 
greater mean-square value than that of a single edge. However, the stretching 
of the different edges is not really independent, and it is plausible that an 
initially square surface element should be stretched out into a parallelogram 
whose acute angle becomes typically smaller and smaller as stretching proceeds. 
This would have the effect of reducing the rate of increase of the area. 

The evolution of the surface element Sii(t) = rL1’(t) vi2)(t), where r(l) and r(2) 

are the edge vectors (D  = 3), can be investigated directly with the equation of 
motion 

d#ij(t) = a,&, t )  &j(t) + aj,(x, t )  &(t), (2.16) 
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which follows from ( 2 . 1 ) .  The squared area is given by 

P ( t )  = &(t) &(t) - ( f l i i ) 2 .  (2 .17)  

Reversal invariance is an unphysical assumption for Navier-Stokes turbu- 
lence. It means, for example, that the energy transfer function vanishes. How- 
ever, a Gaussianly distributed velocity field, produced, say, by random stirring at  
low Reynolds number, could display invariance to u reversal. In  the limit where 
the random velocity field has a correlation time very short compared with the 
eddy circulation time (fast stirring), some explicit results can be obtained for the 
logarithmic rate of stretching of line and surface elements. 

Let U ( X ,  t )  be a statistically isotropic and homogeneous field which is a white- 
noise process in time. It may be constructed by the following limiting process. 
Take ui(x, t )  to be piecewise constant on intervals At, with ui(x,t)cc (At)-* 
and statistically independent for different intervals. Then take At --f 0. To order 
At, equation (2 .1 )  gives 

ri(t + At) = r i ( t )  + aij(t) r j ( t )  At + 4aij(t) ajn(t) rn( t )  (At)2,  (2.18) 

where aij(t) is the constant value in the interval ( t ,  t + At) .  No account is taken in 
(2.18) of the change in trajectory y ( t )  during the interval, because this turns out 
to give a vanishing effect in the limit At + 0.t After some index manipulation, 
the scalar product of (2 .18)  with itself gives 

Ar2 = 2a i j r i r jA t  +aij(ain +ani) rjrn(At)2,  (2 .19)  

to order At, where Ar2 = r2(t + At)  - r2(t). 
Now suppose that the initial distribution of r is isotropic. It stays isotropic, 

since the velocity statistics are isotropic, and moreover, a i j ( t )  is statistically 
isotropic and statistically independent of r(t), by the assumptions on the velocity 
field. It follows that the statistics of r2(t + A t )  are unchanged if (2 .19)  is replaced 
bY 

Ar2 = 2a i jn in j (A t )  r2+ aij(ain + ani) njnn(At)2r2, (2 .20)  

where n is a Statistically isotropic unit vector, independent of aij. 
The coeflicient of At on the right-hand side of (2 .20)  has zero mean and is 

O[(At)-&].  Thus the first term on the right-hand side gives a contribution O[(At)*] 
to  Ar2. In the limit At + 0, this results in finite changes in r2 in finite times, in 
accord with the ‘N4 law’. The second term on the right-hand side is quadratic 
in a. Consequently, it  has a mean which is O(At)  and a fluctuating part also 
O(At) .  In the limit At --f 0, only the mean can give a finite change in r2 in a finite 
time; the fluctuating part of the second term is negligible in the limit. 

If (2 .20)  is substituted into 

Ar = ( r2 + Ar2)4 - r = [( 1 + Ar2/r2)* - I ]  r 

t To order At, the change in trajectory adds the term Q(aai j /az , )u ,r j (At )2  to (2.18). 
In accord with the argument following (2.20), only the mean of this term contributes to the 
growth of r2 when At + 0, and the mean vanishes because of homogeneity, incompressi- 
bility and the independence of r ( t )  and u ( t ) .  That independence follows from the indepen- 
dence of u in ( t ,  t + At)  of its previous values. 



742 R. H .  h‘raichnan 

and the radical is expanded, the result to order At is 

Ar = aij ninj(At) r + 4[aij(ain + ani) ninn - aijar,ninin,n,] (At)2r. (2.21) 

Now try to represent the evolution o f r ( t )  by the scalar equation 

drldt = a(t) r ,  (2.22) 

where a(t)  is a white-noise process. If a( t )  is taken to be piecewise constant, as in 
the analysis above, the result to order At is 

Ar = [aAt + ia2(A\t)2] r .  (2.23) 

Write a = ( a )  +a‘, where ( a )  and a’ are the mean and fluctuating parts. Equa- 
tions (2.21) and (2.23) are the same, to order At in mean parts and order (At)* 
in fluctuating parts, if 

a’ = aijninj, (2.24) 

(a> = 4 N  I> - t(a‘”>)At 

= ([&aij(ain +ani) njnn -aijar,ninjn,n,])At, (2.25) 

where [ ] denotes the square-bracketed expansion in (2.21). 
In  the limit At -+ 0, (aija,,> At -+ 2Aijr,, where 

(2.26) 

and the factor 2 occurs because the continuous t in (2.26) falls with equal proba- 
bility anywhere in the interval At. The isotropic average formulae 

(ninj) = D-lSij, (ninjnrn,) = [D(D+ 2)I-l (S i iSrs+SirSjs+Si i sSjr )  

used in (2.24) and (2.25), together with the independence of a and n, yield 

r t  

where A(t)  = Aijii(t). In writing (2.27) we have assumed incompressibility, 
which implies (via homogeneity and a partial integration) Aiijj = Aijji = 0. 

If the preceding analysis is carried out starting with (2.5) instead of (2.1),  
the only change is aii -+ aji throughout, and the result is 

dkldt = a(t)  k, (2.28) 

with a(t) again a white-noise process specified by (2.27) and the property that 
a( t )  and a(t’) are statistically independent for t 4 t’. This corroborates (2.12). 

According to (2.22), q( t )  = In [r(t)/r(O)] satisfies 

(2.29) 

Our conditions on a(t) imply that q( t )  is normally distributed, by the central limit 
theorem, so that its statistical distribution is fully specified by the mean and 
covariance 

t‘ 

0 
(a(s ) )  ds, (q’(t) q’(t’))  = 2 1  c(s) ds ( t  2 t ‘ ) .  (2.30) 
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The univariate probability distribution is 

&(q) = [47rct]-* exp [ - (q  - ( a )  t)2/4ct], (2.31) 

in the special case where a(t) is a stationary process. 
Suppose now that the velocity field is homogeneous and isotropic but has finite 

correlation times. The statistical symmetry implies that the probability dis- 
tribution of the length r ( t )  of a randomly placed line element of initial length 
r (0) depends only on r (0);  that is 

r(t)  = w(t)r(O), (2.32) 

where the random process w(t) is a functional of the velocity field. Differentiating, 
one obtains (2.22) with a(t) = d(1n w)/dt. Now a(t) is not a white-noise process, but 
as before, it has both a mean and a fluctuating part. Cocke (1969) shows in general 
that (In w )  > 0,  in accord with our result for the white-noise case. 

It is important to note that the non-zero mean (a( t ) )  arises not because there 
are mean shears (there are not in the cases described) but as a consequence of the 
fact that D > 1. It is this fact that results in non-zero mean logarithmic rates of 
increase for Ir(t)l even though the tensor a(t) has zero mean.? Note that, in the 
incompressible white-noise case (2.27)) 

(2.33) 

so that the ratio rises with dimensionality D. In  the more realistic case where 
a(t) and the characteristic frequencies of a(t)  are both of the order of typical 
shears in the fluid, we conjecture that (2.33) is still approximately valid. 

3. The k-l regime at zero diffusivity 
The analysis of $2 applies directly to the stretching of blobs of a passively 

convected scalar field a t  zero molecular diffusivity, provided that the spatial 
scale of variation of the straining field is large compared with the blob sizes. 
Batchelor (1959) was the first to treat this regime. He found that the scalar spec- 
trum F(k)  for wavenumbers k large compared with those contributing to the 
straining field should have the steady-state form 

F(k) = XYk-', 

where x is the rate a t  which scalar variance is transferred into the k-l range from 
lower wavenumbers and y is an effective rate-of-strain parameter of order 
(s/v)S,  with t: and v equal to the rate of energy dissipation by the turbulence per 
unit mass and the kinematic viscosity, respectively. 

Consider an initial state in which the scalar field consists of small flat sheets 
or ribbons whose thickness b is small compared with the other dimensions. Let the 
sheets be homogeneously and isotropically distributed and let the initial thickness 

7 A rather delicate distinction arises here. If d (ln[r(t)/r(O)])/dt > 0,  then (a ( t ) )  > 0. 
But, in general, d[ln (r(t)/r(O))]/dt > 0 even if (a ( t ) )  = 0. If the velocity field is statistically 
stationary and its correlations extend only over finite times, Cocke's result (lnw) > 0 
implies that (a ( t ) )  > 0. 
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b(0) be the same for all sheets. For the moment we leave unspecified the varia- 
tion of scalar amplitude across the sheets. Starting a t  t = 0, let the sheets be 
convected by a stationary, homogeneous isotropic turbulent velocity field which 
is statistically independent of the initial scalar field. Let the sheets be small 
enough that the strain field varies negligibly over each sheet during the entire 
convection process. Then, by the argument yielding (2 .32)  and its consequences, 
the reciprocal vector to b(t) obeys an equation of the form of (2.28), so that b 
satisfies 

dbldt = - a(t)  b. (3.2) 

If q(t) is now redefined as -In [b(t)/b(O)], it  satisfies (2.29). 
If the straining field is a white-noise process, as discussed in $2 ,  the proba- 

bility distribution is given by (2.31) and (2.27). The probability distribution of 
b itself is 

W )  = &(dldq /db]  = b-l a -1n ( ~ l b o ) l ,  (3.3) 

with b, = b(0) .  When the straining field has a finite correlation time, q as given by 
(2.29) is asymptotically normal, with distribution of the form (2.31), provided 
that a(t) satisfies sufficiently strong conditions of independence for time dif- 
ferences long compared with the correlation time (Lumley 1972; Rosenblatt 
1972). We shall discuss these conditions, and the nature of the asymptotic 
approach to normality for large t ,  later on. It should be noted that (2.27) holds 
only for the white-noise case. 

Equations (3.3) and (2.31) imply that P(b) behaves like b-1 over the range 

Irr-(a>tl < (ct)*, (3.4) 

a range whose logarithmic length grows like tt  and whose centre propagates to 
smaller b values at the logarithmic rate (a). There is a corresponding k-l range 
in the scalar spectrum function F(k) .  To see this, suppose that F(k)  has the initial 
form 

P(k)  = Ybllf(kbo), (3-5) 

whereY is the scalar variance and f, which satisfies 

is related to the Fourier transform of the amplitude profile across the sheets. This 
form for F(k)  is assumed to hold for k-1 small compared with the edge lengths 
of the sheets. 

Under our assumption that straining is negligibly non-uniform over each 
sheet, the shape of the amplitude profile is unchanged during convection, and 
it follows that the spectrum at later times is 

F ( k )  = Y / bf(kb) P(b) db. (3.6) 
0 

Suppose that f (x) is monotonically decreasing, with half-width of order one. 
Examples would be f(x) = 1, 0 for x 2 1, or f(x) = (2/n)* exp ( - +x2). Then 
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P(k)  decreases monotonically from a maximum at P(0). If (3.3) and (2.31) 
are used in (3.61, the result is that F(k)  has a half-width measured by 

In (b,k) = ( a )  t 

and displays a k-l range given by 

P(k)  M Y[4;rrct]-*k-l [ ) l l ~ ( b o k ) - ( ~ ) t l  < (ct)*]. (3.7) 

The rough behaviour for k beyond the k-l range is given by replacing f(x) with 
6(x- 1) .  Then (3.6) yields 

P(k)  N 7r2P(k-l) [In (b,lc) 9 (u)  t + (&)&I, 13.8) 

to logarithmic approximation. This falls off more rapidly than any power of k 
if (3.3) and (2.31) are used. 

A similar k-l spectrum arises also under more general conditions than the 
present lognormal, or asymptotically lognormal, statistics. All that is needed is 
that 

a(s) ds 1: 
exhibit a probability distribution that falls off smoothly and rapidly enough from 
a maximum a t  the mean value, and has a half-width that continually increases 
with time. Then (3.3) and (3.5) imply a steadily lengthening range of b-1 and k-1 
behaviour. 

Moreover, if a b-l range is set up as an initial condition, it persists for a time, 
regardless of the a(t) statistics. Write P ( b )  as ( p ( b ) ) ,  where the angular brackets 
denote averaging over a(t) and, by (3.2)) p ( b )  obeys the continuity equation in 
phase space, 

Clearly p ( b )  does not change with time in a region where it varies like b-1. If 
p(b)  varies initially like b-l in a range of b, then P ( b )  is constant in time over that 
range until there has accumulated an appreciable statistical weight of stretchings 
which connect b values within the range to values outside the initial b-l range. 

Now suppose that, starting a t  t = 0, randomly placed and oriented sheets of 
thickness b, are added a t  a statistically steady rate R. Let the associated rate of 
input of scalar variance be x ,  so that, if there were no convection, the spectrum a t  
time t would be given by (3.5) with Y = X t .  For a white-noise a@), the probability 
distribution Q(q) ,  normalized with Rt,  is the integral of (2.31) : 

ap(b)/at  = a(t)  a[bp(b)]/ab. (3.9) 

This yields a b-l range specified by 

P(b) M R ( ( a )  b)-l [(u)t  9 (ct)*, 0 < In (b,/b) < (a) t ] ,  (3.11) 

since, under the stated inequalities, the integral in (3.10) is z (a)-'.? By (3.6), 
the associated k-1 range is 

F(k)  z x((a)k)-l  (0  < ln(kb,) < (a ) t ) .  (3.12) 

rt 
t In  effect, the integral may be replaced by S(q- (a ) s )  ds. 

J O  
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In  three dimensions, this result, with ( a )  given by (2.27), has previously been 
obtained by a different analysis, involving directly the scalar field equation 
(Kraichnan 1968). 

Equation (3.12) differs from Batchelor's original result (3.1) only in that 
(a )  does not really correspond to a persistent least-rate of strain - y as invoked 
by Batchelor (1959). The constant quantity (a)  is non-zero not because strains 
are persistent butbecause the odds favour net stretching of a surface element by a 
succession of randomly related short-term strains. 

4. Statistical properties of the k-l regime 
In  treating the higher statistics of the convected scalar field, we shall first 

examine the case of a white-noise a(t) ,  where clean explicit results are easy to get, 
and then discuss the deviations expected in more realistic cases. Consider first 
the statistics of the spatial derivatives of the scalar field @(x, t ) .  A convenient 

where the integration is over the entire volume of a single sheet and z is normal to 
the sheet. It follows directly from ( 3 4 ,  and the invariance of the profile shape 
during convection, that 

f m  

where N is the number density of sheets. The statistics of In therefore are those of 
b-2n. 

In  the freely evolving b-l regime (no input after the initial instant), In is log- 
normal, according to (2.31). Its  intermittency, as measured by kurtosis, say, 
increases rapidly with n and with the logarithmic variance (qt2),  according to the 
moment formula 

((b/b,)-n) = (enq) = exp [n(q) + frn2(qt2)>3 

= exp [n(a) t + n2ct]. (4.3) 

The corresponding formula for the regime with steady input is found from 
(3.10) to be 

((b/b,)-n) = [exp (n(a)t+n2ct)- I]/(n(a)t+n2ct). (4.4) 

Equation (3.10) describes a somewhat more intermittent distribution than the 
lognormal one, since it is an average over lognormal distributions (for b)  with 
different parameters. Thus (4.3) yields 

(4.5) 
while (4.4) gives 

(b-n)/(b-l)n = (bn)/(b)" = exp [n(n - 1) ct] ,  

(b-n)/(b-l)n z exp [n(n - 1) ct] ( (a)  t + ct)"/(n(a) t + n2ct) (ct > 1). (4.6) 

The ratios given by (4.6) are larger than those given by ( 4 4 ,  but by a factor small 
compared with the exponential. 
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The amplitude difference A$(r) = $f(x + r) - $(x) [we suppress the argument 
x in A$(r)] is related to F(k)  by 

[A$(r)I2 = 2IOW F(k)  [I-  g(kr)ldk, (4.7) 

(4.8) i sin (kr) /rk (three dimensions), 

0 

where J 
' ( l c r )  = 1 (2/n-) cos (krx) ( 1 - x2)-3 dx (two dimensions). 

If F(k)cc k-l is substituted into (4.7), the integral converges a t  small k and di- 
verges logarithmically a t  large k, in both three and two dimensions. This shows 
that (in constrsst to a k-S range) A$(r) in a long k-l range is not a local function in 
the sense that it is determined by the excitation at wavenumbers k - l / r .  Instead, 
it depends on all wavenumbers k 2 l/r, up through the top of the k-1 range. 

The qualitative statistics of A$(r) can be simply inferred when the scalar 
field consists of little thin sheets. The univariate probability distribution of 
$(x) then has the form 

where h is the fraction of the total fluid volume occupied by sheets of scalar and 
p( ), the probability distribution within a sheet, is assumed to be the same for all 
sheets. The volume fraction h is constant in time for the freely evolving case 
described by (2.31) but increases linearly with time in the case of (3.10). Both 
h andp( ) are invariant under the convective distortion; p( ) is the rearrangement 
of the amplitude profile across the sheets. 

If r is so large that x and x + r lie in the same sheet with negligible probability, 
then $(x+r) and $(x) are statistically independent, so that, by a general 
formula for composition of independent variables, the probability distribution 
P,(A$) is given by 

&(A$) = 1 P+(v) Pk(A$ + V)  dv. (4.10) 

Now suppose that there exists a b-l regime, described by (3. lo) ,  which is extensive 
in the sense In (b,/b,) B 1, where b, and b, mark the limits of b-l behaviour for 
P(b) .  Then all but a small fraction of the sheets have thicknesses between b, and 
b,. It follows that (4.10) is a good approximation to Pa(A$) for r > b,. 

On the other hand, if r lies well within the b-l range, sheets with b B r con- 
tribute negligibly to A$(r) since, for such sheets, there is a high probability that 
@(x+r) FZ y?(x), if the amplitude profile across the sheets is any reasonable 
function. But for b < r ,  $(r) and $(x + r) again almost certainly refer to different 
sheets and are statistically independent. In this case, it follows that 

P&k) = (1 - h)  &($) +hP($L (4.9) 

- W  

(4.11) 

(4.12) 

(4.13) 

Here hr is the fraction of fluid volume occupied by sheets with b > r .  Note that 
no cross-contribution appears in (4.1 I) ,  with x in a blob b < r and x + r in ? 
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blob b > r .  Such contributions are negligible if r lies well within an extensive 
b-l range as assumed. The reason is that our underlying assumption of effec- 
tively uniform straining over any single sheet implies also uniform straining 
over the neighbourhood of any sheet. Since the sheets all start out with thick- 
ness b,, this precludes that a sheet with b < r could lie within a distance r of a 
sheet with b 9 r .  

To illustrate (4.11), take p ( $ )  = 8(1+9-$~); that is, uniform amplitude $o 
within the sheets. Then 

P A W )  = [(I - hA2 + h3 WW) + hA1- h,) [W$ + $0) + WW - $O)J (4.14) 

Here the h,2 term in the coefficient of $(A$) gives the probability that both x 
and x + r lie in sheets with b < r ,  while the remaining term is the probability that 
neither x nor x + r lies in such a sheet. 

Equation (4.14) and, more generally, (4.1 1)  show that the intermittency of the 
A$ distribution exhibits a slow logarithmic increase as r decreases within the 
b-l range. But as r decreases below b,, the fraction of sheets with b < r becomes 
very small, and the intermittency then increases rapidly. The asymptotic b-l 
range is exactly self-similar in the sense that there are equal numbers of sheets 
in equal logarithmic steps of b, throughout the range, and the probability distribu- 
tion of amplitude profiles in the sheets is independent of b. The logarithmic 
departure of the A@ distribution from seIf-similarity is due to the non-local 
dependence of A$ on sheet scale size, as indicated already by (4.7). 

P,(A$) exhibits qualitatively similar behaviour in the case of the freely evolv- 
ing b-l range described by (2.31). But here a substantial fraction of the sheets lies 
outside the b-l range even for large b,/b,, as a result of the fact that the logarith- 
mic widths of the range and of the roll-off from it are both measured by (ct)a. 
Consequently (2.30) is inaccurate by a factor of order one, for this case. 

Now we wish to consider the more realistic case in which the velocity field has 
finite correlation times, but is still a stationary, homogeneous, isotropic process. 
If  a(t) is sufficiently statistically independent for long time separations, then q(t), 
as given by (2.29), becomes asymptotically normally distributed for large t 
(Lumley 1972; Rosenblatt 1972). We shall return to the meaning of 'sufficiently 
statistically independent '. First, it  is important to examine the asymptotic 
approach t o  normality for q, and lognormality for b, when it does occur. For this 
purpose suppose that a(t) and a(t') are completely statistically independent if 
t - t' exceeds a time At.  Then, as t increases indefinitely, the fractional deviation 
of any given moment of q(t) from normal values decreases towards zero. But for 
any given value of t ,  however large, moments of q(t) of sufficiently high order 
are badly approximated by normal values. 

The nature of the approximation of b moments by lognormal values is much 
worse (Novikov 1971). As t --f co, In (b") approaches lognormal values, based on 
the values of ( b )  and (b2),  with a fractional error which tends to zero. But the 
fractional deviation of (b") itself from lognormal values need not decrease as 
t increases. In particular the ratios ([b(t)]")/([b(t')]"), for t - t' N At, continue 
to depend on the detailed a(t) statistics no matter how large t becomes. 

These deviations from literal lognormality are associated with the far tails 
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of the P(b) function, a t  long t .  Statistical quantities like F(k)  and PA(A@) are 
unaffected for values of k and r which lie within the b-l range. On the other hand, 
I;, and related functionals of the spatial derivatives of the scalar field are sensitive 
to the errors of approximation by lognormality. 

The statistical independence properties needed for asymptotic normality of q 
(Lumley 1972; Rosenblatt 1972) require not only that a(t)  lose coherence with 
itself for long time separations, but that it exhibit certain mixing, or ergodic 
properties. Suppose that the fluid executes a statistically stationary motion 
such that the trajectories of the scalar sheets are ergodic within subvolumes of the 
fluid but there is no migration between cells. Then q(t)  for any subvolume may 
become asymptotically normal for large t. But if the u(t) statistics differ from sub- 
volume to subvolume, the asymptotic normal distributions will have different 
means and variances. The grand distribution over the entire volume will, in 
general, not be normal. The analysis of the b-l range in 9 3 remains valid if car- 
ried out in the subvoIumes and then averaged. Thus (3.11) and (3.12) become 

P(b) M R(Z-1) b-1, P(k)  M x(Z-’) k-l, (4.15) 

where Z denotes the long-time average of a(t) for a single blob and angular brackets 
denote, as before, an average over the entire fluid. Our ergodic assumption implies 
that Z equals the ensemble average within a subvolume. 

It is not clear to what extent the motion of fluid elements in actual turbu- 
lence is ergodic. Both theory and computer experiments suggest that there is 
trapping of particles in a frozen, random, incompressible, homogeneous velocity 
field in two dimensions (Kraichnan 1970). However, the same experiments give 
no evidence of similar trapping in two-dimensional flows which vary randomly 
in time, or in three-dimensional flows, whether frozen or not. We conjecture that 

s,” a(s) ds 

is asymptotically normal for stationary, homogeneous, incompressible Navier- 
Stokes turbulence a t  all D 2 2, provided that the turbulence is maintained by 
normally distributed, or otherwise sufficiently random, driving forces. 

5. The lc-l regime with molecular diffusivity 
When the molecular diffusivity K is non-zero, the k-l range extends to 

k ((a>/K-)& 

while, for higher wavenumbers, P(k)  falls rapidly as k increases (Batchelor 1959). 
The statistics of our little sheets are more complicated when b-l lies in the latter, 
diffusion-dominated range because neither the level nor, usually, the shape of the 
amplitude profile across the sheets is constant in time. 

The scalar field obeys 
(apt - K v ~ +  u . V) $ = 0. 

[ ap t  - Ka2/aX2 - U ( t )  Z a / a Z ]  $(Z, t )  = 0, 

(5.1) 

(5.2) 

In our case of little plane sheets, (5.1) becomes 
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where z is the co-ordinate normal to the sheet in a co-ordinate system whose 
origin stays centred in the sheet, and which rotates with the sheet, but which does 
not stretch. Define the function $(zk,, T) as follows. The initial profile is 

(5.3) 

(5.4) 

In  other words, $ gives the relaxation of the profile that would occur in the 
absence of convection. Then it may be verified by substitution that (5 .2 )  is 
satisfied by 

(5.5) 

where k ( t )  obeys (2.28)) with k(0) = k,, and <(t) obeys 

9% t )  = $W, 5), 

The'statistics of $(z ,  t )  thus are determined by the joint probability distribu- 
tion of k and [. The statistical problem simplifies when $ ( z k , , ~ k ; t )  is self-pre- 
serving, which means an initial profile which either is Gaussian or has the form 
sin(zk,), with enough wavelengths included in the cross-section so that end 
effects produce negligible smearing of the associated &-function spectrum. 

The choice 
$(zk,, 0)  = sin (zk,), (5 .7)  

throughout the volume of the blob, is particularly simple to work with, and we 
shall use it, despite its artificiality, as a basis for discussing other cases. With this 
choice, we no longer require that the blobs be thin sheets. Instead, we assume that 
the initial blobs are many wavelengths large in all directions but still small 
enough that strains vary negligibly over a blob. Furthermore, we assume that 
molecular diffusion makes a negligible change in the total volume of a blob during 
the times of interest 

With this choice, (5.5) and (5.6) yield 

1c.(z,t) = c(t)sin(kz), d[/dt = - - ~ k ~ [ ,  [ ( O )  = I ,  (5.8) 

with k ( t )  again obeying (2.28), a result also immediately obvious from (5.2). 
The joint probability distribution P ( k ,  c), conditional upon a given history a( t ) ,  
then satisfies 

The spectrum function P(k)  is related to P(k,  5 )  = ( P ( k ,  g)) by 

aP/at +aa(kP)/ak - ~ k v ( @ ) / a g  = 0. (5.9) 

(5.10) 

where (T is the fraction of the fluid volume that is occupied by one blob. If the 
equation whose average is (5.10) is inserted in (5.9)) the latter yields 

aP(k) /a t  +aa[kP(k ) ] /ak  + 2Kk2P(k) = 0, 

where P = (9) and a partial integration is performed to obtain the final term. 

(5.11) 
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FIGURE 1. The function f ( a k )  for D = 2 , 3  and 4. 

When a(t) is a white-noise process, the average of (5.11) gives immediately an 
explicit equation for F(k) .  To evaluate the term (aa[k&k)]/ak), E ( k )  - F ( k )  may 
be expanded as a formal series in powers of a’ = a - (a), by repeated use of (5.11). 
Only the term linear in a’ gives a surviving contribution in the limit of zero cor- 
relation time for a(t). The result is 

aF/at + 2 ~ k ~ F  + (a)  a(kF)/ak-  ~a[ka(kF)/ak]/ak = 0, (5.12) 

where, as before, ( a )  and c are given by (2.27). For D = 3, equation (5.12), with 
(2.27), is identical, after minor rearrangement, to the spectrum evolution equa- 
tion obtained by a previous treatment of the white-noise case (Kraichnan 1968). 

For a spectral region in a steady state, (5.12) becomes 

[ka2/ak2-(D- l ) a / a k ] ( k F )  = 2a2k2F, a2 = D ( D + ~ ) K / A .  (5.13) 

If K = 0, there are two power-law solutions, F(k)cc k-l and F ( ~ ) K  kD-l. The 
first, of course, represents the k-l range discussed previously. The second is a 
state of absolute statistical equilibrium in which there is equipartition among 
all degrees of freedom of the scalar field. If K > 0, the solution reducing to (3.12) 

at small k is F ( k )  = x((a)k)-lf(ak,/Z)exp ( -ak2 /2 ) ,  (5.14) 

where f(0) = 1 and f(x) is a solution of Kummer’s equation 

Xd2fldX2 - (2x + D - 1)  df/dx + (D - 1) f = 0. (5.15) 

For D = 3, the solution is f(x) = 1 + x  (Yee 1968, private communication), 
and the general solution for odd D is a polynomial of degree +(D - 1).  For D = 5 ,  
f(x) = 1+x++x2.  For even D,  f(x) is transcendental and must be found by 
numerical integration. It rises monotonically with x and is O[X$(~-~)] a t  large 
x (Abramowitz & Stegun 1965). Figure 1 shows f(x) for D = 2, 3 and 4. 
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Although we derived (5.12) by taking special input statistics, it is generally 
valid for any input or initial statistics of the scalar field. This is because the dy- 
namics are linear and moments of different order in the scalar field are decoupled. 
Of course an input term must be added to (5.12) a t  wavenumbers where scalar 
variance is fed into the system. Equation (5.14) is valid in a steady state whatever 
the statistics of the input a t  wavenumbers below the k-l range. 

According to (5.14), the spectrum fall-off at large k is essentially exponential. 
On the other hand, if fluctuations in u(t) are neglected [c = 0 and (a)  unchanged 
in (5.12)], equation (5.14) is replaced by 

P(k)  = x((u)k)-lexp(-Kk2/(a)) = X((u)k)-lexp( -a2k2/D).  (5.16) 

This recovers the original result of Batchelor (1959) and gives a Gaussian fall-off 
a t  large k. Evidently, the spectrum in the dissipation range is profoundly affected 
by fluctuations in a(t). 

Equation (5.9) leads to the following equation for the full joint probability 
distribution P(k,  y), in analogy with the passage from (5.11) to (5.12): 

aP/at - [ka2/ak2- (D - 1)  a p k ]  (kP) - .2k”a((y)/ag = 0. (5.17) 

In  the k-l regime, the univariate distribution P(k)  is unaffected by K a t  all Ic 
and is given, cf. (3.11), by 

P(k)  = R((u) k)-’, (5.18) 

where R is the rate of input of blobs. P(b) is normalized by Rt,, where t,, the 
total time of evolution, must be long compared with (a)-‘ In (klk,) a t  all wave- 
numbers k that are of interest. We shall write 

w, 5)  = P(k)  P(514, (5.19) 

where P(glk), the probability distribution of 6 conditional on a sharp value k, 
is normalized by 

Then (5.17) and (5.18) yield the steady-state relation 

[ka2/ak2- (D-  1 )  a / a k ] P ( q k )  +a2ka[cP(qk)]/at;  = 0. (5.20) 

It may be verified by substitution that the solution of (5.20) which obeys the 
boundary condition P(CI0) = a(<- 1) is 

where 
cP({lk) = ND(ak)DIln~1-:(D+2)exp (-a2k2/411nc1) (0 < 5 < I ) ,  (5.21) 

ND = {’- I[ + ( D - 2 ) ] !  (evenD), 

= & d [ Q ( D -  I ) ] ! / (D-  I)! (OddD). 

The corresponding distribution &([\k) for 5 = -In 6 is then 

&([I k) = ND(ak)D [ - W + 2 )  exp ( - a2k2/4[) (0 < [ < a). (5.22) 

For ak < 1, P(51k) shows a sharp peak near 5 = 1. This is already substan- 
tially broadened for ak = 1, and the maximum disappears completely above a 
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moderately greater value of ak, which depends on D. (It is ak = 2 for D = 2.) 
The singularity a t  5 = 0, which differs only logarithmically from a 5-l singu- 
larity, grows more prominent as ak increases. For ak 9 1, P(5lk) descends 
smoothly from the singularity to its eventual cut-off, associated with the ex- 
ponential factor in (5.21). &(Elk) is a notably skewed distribution exhibiting very 
high intermittency. I ts  moments of order $D and higher do not exist. 

Equation (5 .22 )  can be rewritten as 

(5.23) 

where Z ( V )  = ND(2D)@'vW-2) exp ( - - p v ) ,  Iom Z ( v )  dv = 1. (5.24) 

This has the following interpretation. A time-invariant statistically' sharp 
stretching function (a)  would result in the distribution 

&(Elk) = 4 5 -  W 2 / ( a ) ) ,  (5 .25)  

corresponding to (5.16). Thus (5.23) and (5.24) represent the actual &(Elk) 
as the result of a statistical distribution Z(v)  of fictitious constant stretchings 
v(a) .  Equation (5.24) gives 

/om Z(v) v d v  = 1, 

so that the mean of the fictitious stretchings equals the actual mean (a). 
The singularity in P(C1k) a t  6 = 0 is associated with the behaviour of Z(v )  

in the neighbourhood of v = 0; that is, with very small effective stretchings which 
permit high attenuation for a given growth of k from its initial value k,. In 
the actual physics, where a( t )  fluctuates in time, this corresponds not only to 
slow monotonic growth of k but also to realizations in which k attains high values, 
where 5 is dissipated rapidly, and then decreases, when a(t)  becomes negative 
for an interval of time. 

Mn(k) = lom ~ ~ ( 5 1 k )  (5.26) 

obey aMn/at - [k2a2/ak2 - (D - 1)  k q a k ]  M~ + na2k2Mn = 0, (5.27) 

an equation which follows from taking moments of (5.17) and performing a 
partial integration on the a/ac term. Comparison with (5.13) shows that (5.27) 
has the steady-state solution 

The moments 

Mn(k) = f ( a k n 4 )  exp ( - a h * ) .  (5.28) 

The preceding discussion shows that &(Elk) has no very spectacular depen- 
dence on D. It is of interest, however, to examine the behaviour as D -+GO. 

Z ( v ) ,  given by (5.24), has its maximum at v = 1 - (2D)-1. As D -+ co, the peak 
gets sharper, and the limiting form is Z ( v )  = 6(v -  1). Thus (5.16) and (5.25) 
are exact in the limit of infinite dimension. This is also clear from (2.27), which 
gives c/(a) -+ 0 in the limit. 

Much of the analysis for the special case of blobs with sinusoidal profiles 
applies alcio to the general sheet profile, described by ( 5 4 ,  (5.6) and (2.28). We 

48 F L M  64 



754 R. H .  Kraichnan 

have already noted the general validity of the spectrum equation (5.12). More- 
over the parameter <, which equals -In< in the special case, obeys the same 
equation of motion (5.6) and initial condition c(0) = 0 in the general case. Thus 
the probability distribution &(Elk) is still given by (5.22) in the general case. 

6. Statistics of $(x, t )  and its spatial derivatives 
The explicit solution for the joint probability distribution P(k)  Q ( < l  k) found 

in $5, for the case of isotropic turbulence with rapid time variation, permits the 
determination of a great variety of probability distributions and moments for the 
scalar amplitude @(x, t ) ,  and its spatial derivatives, by appropriate quadratures. 
We shall indicate the general technique for doing this, and then give a few 
particular results. 

It is first necessary to point out the relationship between the single-sheet 
distribution functions and the distribution functions of the fields @(x, t ) ,  
a@(x, t)/ax,, etc. Let w be any linear functional of $(x); in particular w can stand 
for @(x) itself or any of its spatial derivatives. Let Pw(wlko,7), where 7 = Kkit, 
be the probability distribution for w for a single, randomly oriented and posi- 
tioned sheet which suffers diffusion but not convection. Thus Pw(wlko,7) is a 
functional of the function $ defined by (5.3) and (5.4) and of the characteristic 
sheet volume A,/ko = V,, where A ,  is the (D - 1)-dimensional area of the input 
sheet. If an initial amplitude distribution is taken, by altering (5 .3 )  to 

@(% 0) = P$(zko, O ) ,  

where P is a random variable of prescribed distribution, these statistics are also 
included in P,(w 1 k,, 7). The normalization 

/;m ~,(wlk,, 7) dw = 1 (6.1) 

is used. 
Under the assumption that the volume of a single sheet is small compared with 

the total volume of the flow, P,(wlko, 7) can be accurately approximated in the 
form 

Pw(wlko, 7) = [I - m i  &(w) + 47) P&@,, 7). (6.2) 

Here 47) is the effective fraction of the total $ow volume in which w is non- 
negligible and Pk(wlko, 7) is the probability distribution of w, within that volume 
fraction, again normalized to unity. Obviously 47) is proportional to 6, and it 
is, in general, an increasing function of 7, since diffusion tends to spread the 
excitation in space. 

It follows directly from (5.5) that the corresponding single-sheet probability 
distributions in the presence of convection are Pw(w(k, 6) and PL(wlk, E ) ,  while 
(6.2) becomes 

P,(wlk 5) = [I- 4 3 1  + 4 5 )  P&lk 6). (6.3) 

Note that convection affects the volume fraction cr only indirectly, through 5, 
since the convection preserves volumes. 



Convection of a passive scalar by a straining jield 755 

The total field w(x) is a sum of contributions from all the sheets, since w is a 
linear functional of $. Consequently, the overall distribution P,(w) is the con- 
volution of the individual distributions Pw(w[k, [) of all the sheets, provided that 
the sheets are statistically independent of each other. It follows that the charac- 
teristic functions 

m 

C,(s) = 1 Pw(w)eiWSdw, Cw(slk,6) = [" Pw(wlk,6)eiwsdw 
J --m J - W  

are related by 
N 

n=l 
Cw(s) = rI Cw(slkn, 6n)) (6.4) 

where kn and En are the parameters of the nth sheet. In  the limit of a large 
number N of sheets, (6.3) becomes 

lnQw(4 = ~ ~ d 5 ~ o m d k l n [ ~ w ( s l k , 5 ) 1 P ( b ) & ( 5 / k ) ,  (6.5) 

where, according to the definitions in $ 5 ,  P(k)  is the distribution of k, normalized 
to N ,  and &(El k) is the distribution of 6 at given k, normalized to unity. 

Two approximations, whose validity must be examined carefully, lead to 
successive simplifications of (6.5).  The Fourier transform of (6.3) is 

Cw(sjk, 5) = 1 - 4 5 )  + d 5 )  CL(sIh '9. (6.6) 

Thus if ~ ( 6 )  < 1, as we have assumed, this suggests that (6.5) can be replaced by 

If, in addition, 

which means that all N sheets occupy only a small fraction of the fluid, it  is 
further suggested that InCw(s) < 1, so that Cw(s) M 1 +lnCw(s). Then (6.7) can 
be transformed back to yield, finally, 

Equation (6.8) clearly describes the case of non-overlapping sheets, a condi- 
tion which is consistent with statistical independence of the sheets only if the 
sheets are sparse. The conditions for the accurate validity of (6.8) are realizable 
for the transient convection a t  K = 0 analysed in $$3 and 4, provided that the 
total number of sheets initially present, or the total input Rt, is appropriately 
small. But the steady-state distributions considered in 5 5 violate the conditions 
because, no matter how small R is, the total number of sheets grows linearly with 
t and is infinite in the steady state. Moreover, ~ ( g )  grows with 5 for most choices 
of initial profile (the sinusoidal profile (5 .7 )  is an exception). However, the total 

48-2 
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number of sheets with k < a-1 in the steady state is N Iln (ak,)lR/(u), which can 
be as small as desired. The violation of the conditions for (6.8) therefore is as- 
sociated with sheets of very high k and consequently very low amplitude which 
fill the flow volume with a background of low-level excitation. We therefore 
anticipate that, if (6.8) is applied to the steady state, P,(w) may exhibit a non- 
integrable singularity a t  zero amplitude w, which would disappear if (6.5) were 
used instead. The situation is analogous to multiple soft-photon divergencies in 
radiation theory. 

In  practice, (6.5) leads to awkward numerical evaluations in cases where 
(6.8) does not. We therefore find it both easier and more illuminating to  use (6.8) 
even where it should not be used and then identify the resulting misbehaviour at 
w = 0 and indicate qualitatively how it would change if (6.5) were used. 

Now we shall examine the particular case where the input sheets have the 
sinusoidal profile ( 5 . 7 )  and w is taken as P$(x)/axr, where x1 is any space direc- 
tion and 12 = 0 denotes simply $(x). For this case, the initial (input) distribu- 
tions have the form 

where Y,(w) is the distribution of P$(x)/&T associated with randomly oriented 
sheets of profile psinz and whatever p statistics are desired. (Note that 

a/ax, = n,a/az, 

where n is a random unit vector.) Then, by (5.5) and (5.8), ( ~ ( 6 )  = ( ~ ( 0 )  = (T, 

PA(wlk,, 0) = k," Y,(k,"W), (6.9) 

while 
(6.10) 

This expression, used in (6.8) together with formulae for P(k)&([lk) from $ 3  or 
35, gives an explicit result for the distribution P,(w) of an$(x)/8x? in terms of an 
integral over the input distribution Y,(w). 

Moments of the several distributions may be defined by 

(6.11) 

(6.12) 

(6.13) 

i 
m m 

M : = j  w'Pn(w) dw, M;(k, 6 )  = 1 wrPA(wlk, [) dw, 
-m  - W  

W'Y"(W) dw. 1:m 
Jf; = lorn dSJ; d k 4 S )  J C ( k ,  6 )  P(k)  &(5[k ) ,  

ML(0) = 

Then (6.8) gives 

while (6.10) yields 
H;(k, S) = e-rt knpH;(O). 

Also, for the sinusoidal sheets 

M;(O) = JG(0) ( n 3 ,  (6.14) 

[1.3 ... (8- l ) ] / [ D ( D + 2 )  ... (D+s-2 ) ]  (evens), 

0 (odds). 
where (a:) = { 

For the transient regime a t  K = 0 with steady input rate R ,  P(k)  = k-l&(q) 
with q = ln(k/k,) and &(a) given by (3.10), while &(Elk) = S(6). Then (6.12), 
(6.13) and (4.4) give 

M', = aMk(0)7C8,[exp(s(u)t+s2ct)- l]/(s(a)t+s2cct) (s  = nr). (6.16) 
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The rapid rise of N ;  with nr confirms the essentially lognormal behaviour of 
P$(x) /azn  found in 5 4. 

For the steady-state finite K regime of $5, P(k)  is given by (5.18) for lc well 
above k,, and &((It%) is given by (5.22). In order to be able to do the integrals in 
(6.12) analytically, we shall assume (5.18) and (5.22) for all k, and then identify 
the errors produced thereby in the results. With this procedure, the k integration 
in (6.12) yields 

where I 2'[4(s - I)]! (odd s), 

nss! / ( i s )  ! (even s) . NL = 

(6.17) 

(6.18) 

For n = 0, the integral in (6.17) diverges logarithmically at 5 = 0 for all r 
and diverges a t  .$ = co for r 6 0. The ratio of the peak amplitude in a sheet to its 
initial peak amplitude is 5 = e-6. The divergence at 6 = 0 therefore is associated 
with the impermissible extension of the k integration below k,, since it is a t  low 
wavenumbers that amplitudes are unaltered. The behaviour a t  5 = 00, or [ = 0, 
suggests that P,(w) behaves like w-l, apart from possible logarithmic factors, 
a t  w = 0. These inferences are supported by looking directly a t  the distribution 
of 6. Integration of (5.19), with P(5lk) given by (5.21), yields 

(6.19) 

Here the divergence a t  6 = 1 is easily seen to come from k = 0. The singularity 
in (6.19) at 6 = 0 is non-integrable. Similar behaviour for Po(w), as given by 
(6.8), can be verified at  w = 0. The divergence is due to the background of low 
amplitude, high k sheets, discussed above, and is associated with the break- 
down of the approximations leading from (6.5) to (6.8). 

If the 12 integrals were properly cut off at  the lower limit k,, and (6.5) were used, 
the result would be a function P,(w) with a tail that behaves like (w( lnwl)-l 
down to a value w((T), such that 

and changes behaviour for smaller w so as to be integrable a t  w = 0. The cross- 
over w(a)  decreases rapidly as (T decreases, and for (T < 1, the (wl In wl)-l tail 
extends to very small w. 

For n > 1 and r = 0, the integral in (6.17) exhibits the same divergences at  
5 = 0 and = co as for n = 0. This implies a tail to Pn(w) like the tail of Po(w) a t  
small u', but with logarithmic factors that may depend on n. In contrast to the 
case n = 0, the integrals in (6.17) converge for n 2 I ,  r > 0, and (6.17) gives 
M; accurately if (T < 1. With the integration performed, (6.17) gives 

M;/M;( 0) = (~R(a)-l a-rnND N;,,, r-4rnl?( 4rn). (6.20) 

When r n  is large, (6.20) gives 

.&I; - 3a-rne-rnr*rnnrnM;(0), (6.21) 
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with 

and 

where Stirling's approximation is used and only factors of exponential strength 
in r or n are retained. In  contrast, (6.16) yields 

M z / ( M i ) "  N i71-rexp [4n2(r2-r) ct] M:(O)/[MZ(O)y. (6.23) 

Equation (6.22) shows a markedly less rapid rise of normalized moment values 
with r and n than the essentially lognormal behaviour exhibited in (6.23). 
In  the steady-state, non-zero K regime, dissipation cuts off the excitation in very 
small scales much more rapidly than in the very diffuse tail of the freely growing 
k-l regime at  zero K. Clearly this has a big effect on high-order moments of high- 
order derivatives. The rate of growth with r shown in (6.22) is more nearly typical 
of a normal distribution than a lognormal one. The precise form of the distribution 
cannot be deduced from these crude asymptotic estimates of course; it must be 
found, if desired, from (6.8) or (6.5). 

Sheets with sinusoidal profiles give the advantage of analytical simplicity and 
clarity, but they are quite unrealistic. A more physically relevant choice is the 
Gaussian profile, for which the evolution under pure diffusion is 

(6.24) 

The Gaussian profile is self-preserving under both diffusion and convection, and 
arbitrary profiles tend towards the Gaussian form after sufficiently long periods 
of diffusion. 

The volume occupied by a sheet of profile (6.24) and area A ,  is not precisely 
defined. For our purposes it suffices to take 

g(7) = pg,( 1 + 27p, (6.25) 

where go is A,/k, divided by the total flow volume, and p is a small integer such 
that exp ( - $9) and all its derivatives of interest are negligible for x > p. For the 
Gaussian sheets, (6.10) is replaced by 

PL(wlk, 'g) = k - y i  + 2 p + " Y n [ ( l  + sg)t'"+l'k-"w], (6.26) 

where Yn(w) now is the distribution, in the centred volume p, of an@(x)/ax; 
for a randomly oriented sheet of unit area and profile Pexp ( - &2), with whatever 
/3 statistics are desired. The moment relations (6.13) and (6.14) become 

~ ( 6 )  ML(k, 5) = a,( 1 + 2'g)*[1-("+1)r1knrMr n(0)  (6.27) 

and M',(O) = C(n, r )  n;trM;(O), (6.28) 

where C(n , r )  = J [tin exp ( - +x2) /dzny  d x / /  exp ( - &rx2) dx. (6.29) 

Particular values of C(n, r )  are 

#(zk,, 7 )  = (1 + 27)-: exp [ - &?%!/( 1 + 27)]  (7 = ~ k 2 t ) .  

--m --m 

C(n, 2 )  = 2-2n2n!/n!, C(1, Zr) = Z-Zrr-%!/r!. (6.30) 

If the manipulations which led to (6.17) are carried out for the Gaussian sheets, 
the result is 
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The integralin (6.31) behaveslike that in (6.17) a t  = 0, with the sameinterpreta- 
tion. However, the behaviour a t  .$ = co is different. In  (6.31), the integral con- 
verges at 6 = 00 for r > 1, independently of n. This implies that Pn(w) has a tail 
which goes like w - ~  a t  small w, apart from logarithmic factors, in contrast to the 
w-I behaviour for sheets with sinusoidal profiles. In  accord with the previous dis- 
cussion, the w-2 behaviour is modified to an integrable dependence for w less 
than some cross-over w(v,), which goes to zero with v,. Again, the modification 
represents the difference between (6.5) and its approximation (6.8). 

1 and r > 1, the integral in (6.31) converges a t  both limits and ML 
is given accurately if go < 1.f For large r and n, the factors of exponential 
strength in the evaluation of the integral are n-4. 2-*nr. Consequently, the asymp- 
totic behaviour of ML, corresponding to (6.21) and (6.22), is 

M', N a,a-rne-*rn(rn)B.nn-LM',(O), (6.32) 

For n 

(6.33) 

with 3, = croR/(a). Comparison of (6.22) and (6.33) shows that the increase 
in intermittency of the spatial derivatives under the combined action of con- 
vection and diffusion is essentially the same for sheets with Gaussian profiles 
and for sheets with sinusoidally oscillating profiles. 

The spectrum (5.14) for the steady-state regime is related to the derivative 
moments by 

M i  = s," k2nJ'(k) dk. (6.34) 

Since F(k)  is universal and independent of the sheet profile, (6.34) provides a 
consistency check on the moment asymptotics. If only factors exponential inn are 
retained, (6.34) gives 

M i / M ?  N (&z2e2)1-nn2n, (6.35) 

for all finite D. The f factor in P does not affect the exponential dependence. 
Equation (6.35) is recovered both from (6.21), with the aid of (6.14), and from 
(6.32), with the aid of (6.28) and (6.30), so that the asymptotic analysis agrees 
with (6.34) for both of the profiles considered. 

7. Summary and discussion 
Our analysis startedwith the stretching of line elements, localwave vectors and 

surface elements by isotropic turbulence in a D-dimensional space. The first 
principal result was that the same stochastic stretching parameter a(t) controls 
the logarithmic rate of growth of all three of these different geometric objects 
if the velocity field has reversal invariance. For a white-noise velocity field (one 
driven such that correlation times are much shorter than eddy circulation 
times), the process a(t) was constructed explicitly, and the mean ( a )  and covari- 
ance integral c( t )  expressed in terms of the covariance of the velocity field, by 

t The substitution z = 1 + 26 transforms the integral to  an elementary, analytically 
integrable form, if T is even. 
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(2.27). The induced statistics for the stretched line elements, or (D- 1)-dimen- 
sional surface elements, were found to be lognormal. We found (a)/c = D,  SO 

that fluctuations in the stretching process become negligible for infinite D. In  
the more realistic case of velocity correlation times comparable with eddy circu- 
lation times, we found that statistics of the stretched line elements are asymp- 
totically lognormal, subject to certain necessary conditions and restrictions on 
interpretation ($$3 and 4).  

The results on stretching of line elements and surface elements are directly 
applicable to the statistics of the k-1 spectral regime (Batchelor 1959) resulting 
from convection of a sparse distribution of little sheets of passive scalar whose 
dimensions are small compared with the correlation scales of the shearing field. 
We examined two cases in $0 3 and 4 : the first where all the sheets are put in 
at t = 0 and the second where sheets are added a t  a constant rate R. For both 
cases a number of exact statistical results were obtained under the assumption 
of rapid velocity-field variation. In the first case, the spatial derivatives of the 
scalar field were found to have lognormal statistics, while the second case yielded 
statistics slightly more intermittent than lognormal. These results are given in 

The statistics of the difference field $(x+r) - ~ ( x )  were found to vary only 
very slowly with r for r-l in the k-l spectral range. The intermittency of the dis- 
tribution of this quantity increases logarithmically with decreasing r [(4.11)- 
(4.14)]. 

In  $3 5 and 6, the analysis was extended to sheets of scalar undergoing simul- 
t,aneous convection and molecular diffusion. The key to the extension is the 
similarity solution (5 .5)  which relates the evolution of sheets under combined 
convection and diffusion to their evolution under diffusion alone. Here f is the 
non-dimensionalized effective time over which diffusion has acted and k is the 
characteristic wavenumber that the sheet would have under pure convection. 

With the aid of a special choice of sheet profile (sinusoidal oscillation) we de- 
rived the spectrum evolution equation (5.12) and found its steady-state solution 
(5.14) over the k-1 and dissipation ranges. These results are independent of input 
scalar-field statistics (because the dynamics are linear), and they generalize to 
D dimensions results found previously (Kraichnan 1968) for D = 3, under the 
assumption of a rapidly varying velocity field. For all finite D, the spectrum falls 
off essentially exponentially in the scalar dissipation range. This behaviour is 
due to the fluctuations in the effective stretching process a(t) and contrasts with 
the Gaussian fall-off found by Batchelor (1959) for straining constant in time. We 
found that the spectrum and indeed, the full joint probability distribution of k 
and resulting from the actual a(t)  can be represented as an average over a dis- 
tribution Z(w), with (w) = 1, of constant stretchings .(a) r(5.23)-(5.35)]. In  
the limit D --f 00, fluctuations in a(t)  are negligible, and Batchelor’s original 
result is recovered. 

In  addition to the spectral information, we obtained an analytical solution for 
the steady-state joint probability distribution of k and f ,  together with the as- 
sociated distribution for 6 = e-6 and expressions for the moments of the latter 
[(5.18)-(5.28)]. In  the special case of sheets with sinusoidally oscillating profiles, 

(4.1 )-( 4.6). 
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g is the ratio of the sheet amplitude to its initial amplitude. The conditional 
probability distribution Q([l k) for 5 = - In 5 at given k is highly skewed, and it 
falls off like [-*(D+2) a t  large [, so that most of its moments do not exist. 

The joint probability distribution for k and 6, which was obtained, again, for a 
rapidly varying velocity field, permits the calculation of a wide variety of statis- 
tics both for individual sheets and for the scalar field, and its spatial derivatives, 
resulting from contributions by all the sheets. We found in $6 that there were 
profound differences between the probability distributions of the spatial deri- 
vatives in the cases of the freely growing k-1 regime with zero molecular dif- 
fusivity and of the steady-state k-l regime (with associated dissipation range) 
with non-zero diffusivity. The distributions for a sparse collection of sheets in the 
non-zero diffusivity case displayed low amplitude tails which gave non-integrable 
singularities at zero amplitude w. The behaviour was found to be approximately 
like w-* for sheets with sinusoidally oscillating profiles and like w-2 for the more 
realistic case of sheets with Gaussian amplitude profiles. These singularities, 
which are analogous to soft-photon divergencies in radiation theory, are altered 
to integrable form, a t  very small w, when proper account is taken of the overlap 
of highly diffused sheets r(6.1)-(6.8) and associated discussion]. 

In  addition to peculiar behaviour a t  small amplitudes, the distributions of 
spatial derivatives in the regime with non-zero diffusivity exhibit much lower 
intermittency, and a lower rise of intermittency with the order of the derivative, 
than the essentially lognormal intermittency found for the zero-diffusivity k-1 

regime. These results are exhibited by the asymptotic moment expressions (6.23), 
(6.22) and (6.33). The sinusoidal and Gaussian sheet profiles were found to give 
essentially the same growth of intermittency with the order of the derivative. 
It is of interest that the asymptotic moment expressions (6.21) for sinusoidal 
sheets can be shown to be the geometric mean of two artificial sets of moment 
values. In  the first, all sheets of given k have the same amplitude, and the latter 
is chosen to give the correct spectrum (5.14). In  the second, all sheets of all k 
have their undiminished input amplitude, but sheets are annihilated selectively 
a t  different E's so as, again, to give (5.14). It is also of interest that the same rise 
of intermittency with derivative order n, shown in (6.22) and (6.33), occurs if the 
input sheets are fed directly into the dissipation range and there is no k-l range 
a t  all [ak, > 1, where k, is the characteristic wavenumber of the input sheets and 
0: is defined in (5.13)]. This intermittency is intrinsic to the rapidly falling dissipa- 
tion-range spectrum (Kraichnan 1967). 

It should be pointed out that, although we expect the qualitative features of 
the statistics found for the non-zero diffusivity regime with rapidly varying 
velocity field to hold also for velocity fields with correlation times of the order of 
eddy circulation times, even the spectrum form (5.14) will show some changes. In  
the exponentially falling range, the spectrum changes substantially with each 
doubling of k. But for a sheet with typical history, this doubling takes place in 
a time of order (a)-'. If this is also the correlation time of a(t), then clearly the 
spectrum shape, and higher statistics as well, depend on details of the velocity 
statistics. There is, then, no universal steady-state dissipation-range spectrum. 

Even with given velocity statistics, the small-scale statistics of the scalar 
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field cannot be independent of scalar input statistics. The dynamics are linear, 
moments of different order in the scalar field are uncoupled and consequently 
the effect of initial moment ratios is felt forever. Moreover, for zero diffusivity 
K the univariate distribution of $- is invariant under convection. The question 
arises of how much loss of generality in the description of small-scale statistics 
is incurred by our choice of sparsely distributed little sheets as the input con- 
dition. 

If the diffusivity is small, the straining action should eventually draw out 
scalar blobs of whatever initial form into thin ribbons. If the velocity field has 
a finite coherence time, a state should then be reached which well approximates 
our initial state of thin sheets statistically independent of the velocity field. What 
are left then are the questions of the density of distribution of the sheets and of the 
difference between little sheets which are statistically independent of each other 
(our choice) and little sheets which join edge-to-edge to form big ribbons. It 
seems likely that both questions involve fairly subtle differences in higher statis- 
tics which are not crucial at  the present level of treatment, although this surely 
cannot be asserted. It should be pointed out that our analysis runs into trouble 
if the sheets are densely distributed even if they are initially statistically indepen- 
dent. Overlapping contributions from different sheets can be handled self- 
consistently by (6.5), but there is illogicality in this because it is unwarranted to 
assume that overlapping sheets that start out close together (within one velocity- 
field or shear correlation length) remain statistically independent. Thus we can- 
not legitimately treat multivariate Gaussian initial statistics by applying our 
analysis to a dense array of initially independent, overlapping little sheets. 

This work was supported by the Office of Naval Research under Contract 
NOOOl4-67-C-0284. 
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